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I. INTRODUCTION

The steady progress in the hardware development has reached the phase, where the currently available digital
quantum computers, though subject to noise, can potentially outperform classical simulation methods and provide
scientifically valuable insights into the practically relevant problems that reduce to an estimation of physical ob-
servables. Given the noise constraints that restrict the problem size, the many-body and spin dynamics far from
equilibrium is considered to be the most prominent candidate for leveraging the power of quantum computation [1, 2].
Nonetheless, some classical simulation methods still remain remarkably effective in predicting the dynamical observ-
ables in specific problems [3–9]. Taking into account also the problem-size rescaling approaches and the statistical
arguments actual for the fully scrambling dynamics, a very narrow niche is left for a physical model to combine (i)
practical relevance, (ii) high classical simulation complexity, (iii) technological feasibility to be implementable with
the currently present quantum computers (see Fig. 1). The latter implies a requirement for a reasonably discernible
output signal, so that the errors could be efficiently mitigated.

Semiscrambling quantum dynamics is a well suited candidate to reside in the emerging area for solving practically
relevant problems with a quantum computer more efficiently than with the classical resources alone. This is due to
a high degree of entanglement involved in the dynamics on one side and a retarded operator-support growth on the
other side, which ensures the significantly large experimental signal in the presence of noise. Perfect conditions for
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FIG. 1. Quantum computing status. Progress in the technology and quantum algorithms creates an emerging niche for
solving practically relevant problems more efficiently than with the classical resources alone (▼). There are many problems of
high complexity, e.g., the quantum phase estimation [10], that remain technologically infeasible (♦). The previously reported
experiments that were either classically hard (•, e.g., Refs. [11, 12]) or practically-oriented (■, e.g., Refs. [13, 14]) paved the
way to the emergent research area with the both properties.

the observation of semiscrambling dynamics are present in the heterogeneous structures, where the interaction forms
and strengths are distributed non-uniformly yet periodically akin to metamaterials [15] and Kitaev materials [16].
In this paper, we present the experimentally-friendly models for exploring the semiscrambling operator dynamics in
heterogeneous structures compatible with the current quantum-computer architectures (see Sec. II).

The process of operator scrambling in heterogeneous structures is generally rather involved, with no direct evidence
of what role particular sites and connections play in the operator spreading. We review the concept of the geometrical
operator-support density and the operator hydrodynamics related to the operator norm—the only conserved quantity
in a general unitary dynamics—in Sec. III. An important physical information about the main connections in the
structure, through which the geometrical operator density primarily flows, could be highlighted in the interference
experiments involving a scattering on the specific sites of the structure. The resulting time evolution of the operator

contains scrambling (U1) and unscrambling (U†
2 ) stages—manifesting in the destructive interference effects—that

are hard to capture with the classical methods. On one hand, the tensor-network methods struggle due to the

compression errors caused by the high entanglement generated in either of U1 and U†
2 . The tensor-network methods

are also limited in the bond dimension in the attempt to accurately capture the combined evolution operator U† =

U†
2U1 in the from-the-middle-out contractions. The fast contraction method based on the belief propagation is

approximate in non-tree tensor networks due to the loop correlations [17]. One the other hand, the Pauli-propagation-
like methods [6–9] struggle due to the limited memory for tracking the operator branching and merging during the
destructive interference.

This is a quantum-hardware experiment that enables to probe the eventual operator spreading under the dynamics

U† = U†
2U1 via a new probing technique that we refer to as the operator Loschmidt echo (OLE) explained in detail

in Sec. IV. Briefly, the technique includes the evolution of the eigenvectors of a target operator O through the
quantum circuit UVδU

†, where the generator G of the probe unitary Vδ = e−iδG is associated with the property of
the dynamical operator U†OU under study. We show that the measurement of the target observable O at the end of
such a δ-perturbed mirror circuit UVδU

† enables one to extract the out-of-time-order correlation function (OTOC)
∝ tr{[G,U†OU ]†[G,U†OU ]} as a coefficient for the signal decay with respect to the square of the perturbation
strength, δ2. The technique is similar in spirit though disparate in details from the ones exploited in Refs. [12, 14]:
(i) the proposed technique allows measuring OTOC in the maximally mixed (infinite temperature) state not a single
pure eigenstate of the operator O, (ii) the adjustable perturbation Vδ generally differs from a single Pauli gate, can
be global, and ensures a stronger output signal for δ ≪ 1, with δ = 0 serving as a perfect calibration point for any
error mitigation. In the experiments conducted, the target operator O and the perturbation generator G have been
chosen in such a way that they have geometrically disjoint Pauli supports—addressing the physics of how much of
the operator-support density of the dynamical observable U†OU lands on the probe support in the heterogeneous
semiscrambling regime. In Sec. V, we outline the experimental design for measurement of the infinite-temperature

OTOC in the dynamics U† = U†
2U1.



3

C
C

C
C

C

B
B

B
B

B

AA
A

AA

A
A

A

(𝒱, ℰ)

𝒱S

𝒱O
𝒱S

𝒱P

U1 U†
2

O

a b c

O?

δ2

OL
Es

ign
al

0

1
OTOC = 2 d OLE

d (δ2)
δ=0

calibration point  
for noise mitigation

noisy 
values

noise mitigation

0 δ21 δ22

d

|0 ⟩
|1 ⟩
|1 ⟩
|0 ⟩
|1 ⟩

|0 ⟩
|0 ⟩

|1 ⟩

⋮

|1 ⟩
|0 ⟩
|1 ⟩
|0 ⟩
|0 ⟩

|0 ⟩
|1 ⟩

|0 ⟩

⋮

|ϕ1 ⟩|ϕS ⟩ ⋯

∝ O

U1 U†
2 Vδ U2 U†

1

U† U

+1−1

} } } }
L L L LFloquet layers L1

OT
OC scattering 1

full scrambling

2 3 ⋯

scattering 2

Δ OTOC12

FIG. 2. Problem of the operator hydrodynamics in materials and the proposed experimental design toward
its solution. (a) Model. Graph structure of the heterogeneous material defines the connectivity of each of L Floquet layers

constituting scrambling (U1) and unscrambling (U†
2 ) evolutions—manifesting in the destructive interference effects—that are

hard to capture with the classical methods. The difference between U1 and U†
2 in the overall dynamics U† = U†

2U1 for an
observable O (originally landing on vertices VO) is in the presence of scattering on some of the vertices (VS) or the edges

(ES) in U†
2 . The physical question is to probe how much of the operator density is located in the geometric area VP (marked

as ? ) as a result of the eventual operator spreading U†OU . The figure of merit is the out-of-time-order correlation function

(OTOC) ∝ tr{[G,U†OU ]†[G,U†OU ]} for the generator G acting nontrivially in the area VP. OTOC is probed with the operator

Loschmidt echo (OLE) signal ∝ tr[UVδU
†OUV †

δ U
†O] with Vδ = e−iδG. (b) Proposed experimental setup for measuring

the operator Loschmidt echo. O = Z⊗VO . Preparation of a randomly chosen bitstring-state |ϕs⟩ ∈ {|0 . . . 0⟩ , . . . , |1 . . . 1⟩}.
Evolution of the state |ϕs⟩ under UVδU

† results in |ϕs⟩out. Measurement of |ϕs⟩out in the computational basis. Averaging the
parity ⟨ϕs|O |ϕs⟩ ∈ {+1,−1} times ⟨ϕs|out O |ϕs⟩out over S realizations provides the OLE estimation and its statistical error.
(c) Extraction of OTOC from OLE signals for different values of δ. Global rescaling of the noisy signals with respect
to that for δ = 0 is the simplest noise mitigation technique. Other techniques have a calibration point at δ = 0 since the
whole circuit reduces to a mirror circuit. (d) Revealing the physics of scattering. Full scrambling assumption poses the
upper bound for OTOC, 2|VP|. Scattering on different elements of the structure (regimes 1 and 2) results in different OTOC
values. The difference ∆OTOC12 between those OTOCs in reasonably shallow circuits (L ∼ 5...10) is challenging for all known
classical methods.

Classical simulations of the OLE experiment can be divided into two classes: (i) addressing the output signal

∝ tr[UVδU
†OUV †

δ U
†O] for the same choice of the perturbation strength δ as in the experiment, (ii) addressing the

δ-independent OTOC value ∝ tr{[G,U†OU ]†[G,U†OU ]}, from which the output signal can be reconstructed. Due
to the nature of the classical method, either (i) or (ii) is preferential from the viewpoint of efficiency. In Sec. VI,
we review the belief-propagation tensor-network simulations in the Schrödinger picture suited for (i) as well as the
Pauli propagation method, Monte Carlo single-Pauli-path method, and the method based on the purely statistical
full-scrambling assumption that are all better suited for (ii). The list of other available classical simulation methods
is much wider, with the Heisenberg-picture, the hybrid Schrödinger-and-Heisenberg-picture, and from-the-middle-out
tensor-network simulations being some of them. Our preliminary analysis for an example heavy-hex topology model
from Sec. II shows, however, that those tensor-network methods are not as efficient in terms of the convergence speed
as the Schrödinger-picture simulations described in the paper.

In Sec. V, we present the circuit design for a proof-of-principle implementation of the OLE and the OTOC estimation
in an operator dynamics on a heterogeneous heavy-hex structure, with the experiment being conducted by the IBM’s
team and the experiment details being available in Ref. [18]. In the case of the short-time evolution (shallow circuits),
an agreement between the experimental results and the classical numerics is observed, whereas in the longer-time
evolution (deeper circuits) a significant discrepancy is visible, with some of the classical predictions being beyond the
physically meaningful bounds. In the case of the very deep circuits and lesser heterogeneity, we observe the tendency
of the experimental results to approach the predictions obtained under the full-scrambling assumption, supporting
the validity of the experimental results.



4

C

C

C

C

C

B

B

B

B

B

AA

A

AA

A

A

A

E1
E2
E3

𝒱1𝒱2 E1
E2
E3

𝒱1𝒱2

E4

a b

c E1
E2
E3

𝒱

E4

d

ℰ1
ℰ2

ℰ ℰ

FIG. 3. Heterogeneous structures. Translationally invariant periodic lattices of inequivalent cells. Paradigmatic examples
for heterogeneous operator dynamics are attained with (a, b, c) two sets of vertices or (d) two sets of edges resulting in the
fast (V1, E1) or slow (V2, E2) propagation of the effective operator support through them. Operations in a single subset of edges
Ej are commuting as they affect disjoint sets of vertices, making those operations implementable simultaneously and forming
a single layer of interaction gates in quantum computing, where each vertex is associated with a qubit and the whole set of
edges is compatible with qubits’ connectivity implying no extra transpilation cost. (a) A heavy-hex-lattice 2D material
compatible with the topology of IBM’s quantum computers. (b,c,d) Square-lattice 2D materials compatible with the
topology of, e.g., Google’s, IQM’s, and Rigetti’s quantum computers. All the models are compatible with the reconfigurable
qubits’ connectivity enabled in trapped ion and neutral atom devices, such as Quantinuum’s, QuEra’s, and IonQ’s quantum
computers.

II. DYNAMICS IN THE STRUCTURED HETEROGENEOUS CIRCUITS

A. Graph representation

A general framework for the description and design of heterogeneous structures is based on the following graph
representation. The graph vertices V correspond to the lattice sites, whereas the graph edges E encode the interaction
pattern among the sites. In the digital-quantum-computer simulations of the spin- 12 lattices, each graph vertex is
associated with a qubit. The closer the pattern of graph edges E to the actual connectivity of two-qubit operations
in the device, the shallower is the transpiled quantum circuit to be executed. In view of this, we focus on the
graphs compatible with the topology of native gates in present quantum computers, some of them (heavy-hex and
square ones) being depicted in Fig. 3. Should a quantum computer have a reconfigurable qubits’ connectivity, a more
extensive variability in the graph models is allowed (including but not limited to the 2D triangular and general 3D
models). Availability of multiple-qubit native entangling gates would also extends the class of structures amenable to
study.

Heterogeneity in the graph properties is attained through a non-uniform distribution of parameters in either the set
of vertices V , or the set of edges E , or both sets. At the level of the computer native gates, this implies a heterogeneity
in either the single-qubit gates (V ), or the two-qubit gates (E ), or both of them. In Sec. II B, we present several
mechanisms of how the difference in vertex gates or edge gates implies different speeds of the effective-operator-support
growth. The main idea is to separate the whole set of vertices V into fast (slow) information-transmission vertices
V1 ⊂ V (V2 ⊂ V ) or to do a similar separation at the level of edges (E = E1∪E2). All the unitary transformations are
of the Floquet type and can be viewed as a kicked continuous-time evolution. Taking into account the digital-quantum-
hardware implementation, we split the set of edges E = ∪jEj into disjoint sets corresponding to the commuting gates
that are applied simultaneously and form a single layer in the quantum circuit.

The overall graph representation of the OLE experiment includes the following:

• The target observable O that is an operator acting non-trivially on a subset of qubits (VO). Typically, O is a
Pauli operator (see Sec. IVC), e.g., O =

⊗
q∈VO

Zq or O =
⊗

q∈VO
Xq.



5

• A Floquet layer UFL as a part of the unitary dynamics U . Typically, UFL =
∏

E⊂E

(⊗
(q1,q2)∈E uq1q2

)(⊗
q∈V uq

)
or UFL =

∏
E⊂E

(⊗
(q1,q2)∈E uq1q2uq1uq2

)
, where uq1q2 is a native two-qubit gate acting on qubits q1 and q2 and

uq is a single-qubit gate.

• The difference between the scrambling (U1) and unscrambling (U†
2 ) parts of the dynamics U† = U†

2U1 is in the

presence of scattering on some of the vertices or the edges in U†
2 . If UFL is a Floquet layer in U1, then its scattered

version UFLS in U2 reads UFLS =
(⊗

q∈VS
vq
)
UFL

(⊗
q∈VS

v†q
)
or UFLS =

(⊗
(q1,q2)∈ES

vq1q2
)
UFL

(⊗
(q1,q2)∈ES

v†q1q2
)

for scatterings on the set of vertices VS or a set of the connections ES, respectively. Typically, the structure
of UFLS is similar to that of UFL, with the difference being in some of the qubit-local parameters only (where
the scattering takes place geometrically). The effect of scattering in the following sections boils down to a sign
change for some of the parameters in UFL.

• Perturbation Vδ = e−iδG is generated by a Hermitian operator G acting non-trivially on a subset of qubits (VP).
Typically, G =

∑
q∈VP

Zq or G =
∑

q∈VP
Xq implying Vδ =

⊗
q∈VP

e−iδZq or Vδ =
⊗

q∈VP
e−iδXq , respectively.

To resume, the graph representation of the gate-based model consists of the vertices V , the edges E , the observable
localization VO, the scattering localization VS or ES, and the perturbation localization VP. The problem heterogeneity
is encoded in either the fast and slow vertices V1,V2 ⊂ V , or the fast and slow edges E1,E2 ⊂ E , or a combination
of two. Given the digital nature of quantum gates, the set of edges E is convenient to split into the subsets of
simultaneously implemented gates, E = ∪jEj .

B. Gate-based models

In the following sections, we define the Floquet layer structure in terms of the typical native entangling gates
exploited in the current quantum computers. Once the Floquet unitary UFL and its scattering version UFLS are
determined, the dynamics U1 (U2) consists of L repeatedly applied Floquet layers UFL (UFLS),

U1(L) = (UFL)
L, U2(L) = (UFLS)

L, U†(2L) = U2(L)
†U1(L) = (U†

FLS)
L(UFL)

L. (1)

In general, the number of Floquet layers does not have to be the same in U1 and U2, but hereafter we restrict ourselves
to that scenario.

1. Models with the continuously parameterized RZZ-like and Mølmer-Sørensen-like native entangling gates

The Mølmer-Sørensen gate applied to a pair of ion qubits is essentially the RXX(θ) gate, which is equivalent to the
RZZ(θ) gate up to the single qubit rotations. Therefore, the above entangling native gates could be routinely used to
implement the Floquet layer

UZZX
FL (J1, J2, h, b1, b2) =

∏
E⊂E

⊗
(q1,q2)∈E

e−iJ(q1,q2)Zq1
Zq2 e−ih(Zq1+Zq2 )e−i(bq1Xq1+bq2Xq2 ), (2)

J(q1,q2) =

{
J1, (q1, q2) ∈ E1,
J2, (q1, q2) ∈ E2,

bq =

{
b1, q ∈ V1,
b2, q ∈ V2,

(3)

where the heterogeneity can be attained either at the level of edges when the parameter J(q1,q2) varies across the
subsets of edges, or at the level of vertices when the X-field depends on the qubit position, or via a combination
of the two. The following result allows to navigate rationally through the parameter landscape: it clarifies that the
information propagation through the qubit q is blocked if bq = 0 or bq = π

2 .

Proposition 1. Let U be a unitary operator corresponding to a quantum circuit on a graph (V ,E ) with the gates
RZZ(θ) = e−iθZZ/2, RZ(ζ) = e−iζZ/2, and RX(φ) = e−iφX/2, where θ, ζ, φ ∈ R. Let O be an operator that acts
nontrivially only on vertices VO ⊂ V , then the operator U†OU acts trivially on all qubits q ∈ V \VO such that every
graph path (q, . . . , q′) ⊂ E connecting q and q′ ∈ VO contains a qubit q∗ such that φ = πn, n ∈ Z for every RX(φ)
gate acting on qubit q∗.

Proof. Consider two consecutive edges (q1, q∗) and (q∗, q2) on a graph path (q, . . . , q′) ⊂ E connecting q and q′ ∈ VO.
Since the sequential application of circuit gates to the operator O generally results in the growth of its causal cone,
suppose that after some number of gate application the evolved operator O∗ acts trivially (as I) on q1 and q∗ and
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notrivially (as X, or Y , or Z) on q2. The application of any gates on q1 and q∗ does not change the Pauli operator
support ofO∗, and neither does the application of local one-qubit gates on q2. The application of the entangling RZZ(θ)

gate to qubits q∗ and q2 can only result in the non-trivial action of the evolved operator R†
Zq∗Zq2

(θ)O∗RZq∗Zq2
(θ) on

qubit q∗ in the form of the Z operator. Indeed, R†
ZZ(θ) · IX ·RZZ(θ) = cos θ · IX+sin θ ·ZY , R†

ZZ(θ) · IY ·RZZ(θ) =

cos θ ·IY −sin θ ·ZX, and R†
ZZ(θ) ·IZ ·RZZ(θ) = IZ. The Z operator on qubit q∗ commutes with the gates RZ(ζ) and

RZZ(θ) affecting it, whereas every RX(φ) gate acting on qubit q∗ is (up to a phase) either I (if φ = 2πn, n ∈ Z) orX (if
φ = π+2πn, n ∈ Z), and neither of them changes the Z-action of the operator on qubit q∗ (XZX = −Z). Therefore,
the only possible nontrivial component of the dynamical observable on qubit q∗ is Z, which cannot propagate along
the edge (q1, q∗) to q1 and, consequently, to q along the path (q, . . . , q1) ⊂ (q, . . . , q′) unless there are alternative
information propagation paths.

According to Proposition 1, the causal cone of the observable stops expanding once the qubit-q localX-field bq equals
0 or a multiple of π

2 . Should bq ≪ 1, the information is able to leak through that qubit in the retarded way as the Z

operator on qubit q is transformed by e−ibX into the component sin(2b)Y , and the operator IY in turn is transformed
by e−iJZZ into an operator containing the propagated term sin(2J)ZX. Therefore, the operator-leakage probability
through a connection (q1, q2) in one Floquet layer can be roughly estimated as sin2(2bq1) sin

2(2bq2) sin
2(2J(q1,q2)). In

order to obtain a heterogeneous dynamics with the slow and fast information-propagation channels, the choice of
parameters (3) is to ensure an imbalance in the operator-leakage probabilities. Unless otherwise stated, we assume
π
4 ≥ |bq∈V1 | > |bq∈V2 | > 0 if J-parameters are distributed uniformly, π

4 ≥ |J(q1,q2)∈E1
| > |J(q1,q2)∈E2

| > 0 if b-parameters
are distributed uniformly.

Locating Z-scattering on the (fast) vertices V1 or (slow) vertices V2, we get different physical regimes

UZZX
FLS (J1, J2, h, b1, b2) =

{
UZZX
FL (J1, J2, h,−b1, b2), VS = V1,

UZZX
FL (J1, J2, h, b1,−b2), VS = V2.

(4)

Eqs. (2), (3), (4) define the dynamics (1) for different physical regimes, with the model heterogeneity and the
position of scattering vertices affecting the resulting distribution of the operator-support density for U†OU . The
latter is probed by the operator-Loschmidt-echo circuit UVδU

†, where the perturbation Vδ acts nontrivially on the
vertices VP that are typically disjoint from the operator vertices VO in order to probe and compare the physics of
operator hydrodynamics in the cases of scattering on different elements of the circuit.

Note that some entangling layers in U cancel at the seam between U†
2 and U1, facilitating tensor-network simulations.

However, the following XZZX symmetric arrangement of the gates (akin to a higher-order-Trotter decomposition)
reduces the number of canceling gates (down to 0 in some topologies) making tensor-network simulations harder:

UXZZX
FL (J1, J2, h, b1, b2) =

∏
E⊂E

⊗
(q1,q2)∈E

e−i(bq1Xq2+bq2Xq2 )/2e−iJ(q1,q2)Zq1Zq2 e−ih(Zq1+Zq2 )e−i(bq1Xq1+bq2Xq2 )/2, (5)

J(q1,q2) =

{
J1, (q1, q2) ∈ E1,
J2, (q1, q2) ∈ E2,

bq =

{
b1, q ∈ V1,
b2, q ∈ V2,

(6)

UXZZX
FLS (J1, J2, h, b1, b2) =

{
UXZZX
FL (J1, J2, h,−b1, b2), VS = V1,

UXZZX
FL (J1, J2, h, b1,−b2), VS = V2.

(7)

2. Models with the CZ-like native entangling gates

Since the CZ gate is equivalent to the CX and the echoed cross-resonance gate up to local single-qubit rotations,
all those native gates can be considered within a single class of entangling native gates. The gate RZZ(

π
2 ) = e−iπ

4 ZZ =

e−iπ
4 · S ⊗ S · CZ belongs to the same class too. Therefore, all these native gates could be used to implement the

Floquet layer

UCZX
FL (h, b1, b2) = UZZX

FL (J1 = π
4 , J2 = π

4 , h, b1, b2)

=
∏
E⊂E

⊗
(q1,q2)∈E

e−iπ
4 Zq1

Zq2 e−ih(Zq1
+Zq2

)e−i(bq1Xq2
+bq2Xq2

), bq =

{
b1, q ∈ V1,
b2, q ∈ V2,

(8)

where the heterogeneity is due to theX-field parameter bq dependent on the qubit position q. This model is a particular
case of one considered in the previous section, so Proposition 1 is applicable to it too. Therefore, the operator leakage
through a vertex q is controlled by the bq-parameter. Unless otherwise stated, we assume π

4 ≥ |bq∈V1
| > |bq∈V2

| > 0.
The smaller |bq| the slower the leakage.
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Locating Z-scattering on the (fast) vertices V1 or (slow) vertices V2, we get different physical regimes

UCZX
FLS (h, b1, b2) =

{
UCZX
FL (h,−b1, b2), VS = V1,

UCZX
FL (h, b1,−b2), VS = V2.

(9)

Eqs. (8) and (9) define the dynamics (1) for different physical regimes, with the model heterogeneity and the
position of scattering vertices affecting the resulting distribution of the operator-support density for U†OU . The
latter is probed by the operator-Loschmidt-echo circuit UVδU

†, where the perturbation Vδ acts nontrivially on the
vertices VP that are typically disjoint from the operator vertices VO in order to probe and compare the physics of
operator hydrodynamics in the cases of scattering on different elements of the circuit.

Note that some entangling layers in U cancel at the seam between U†
2 and U1, facilitating tensor-network simulations.

However, the following XCZX symmetric arrangement of the gates (akin to a higher-order-Trotter decomposition)
reduces the number of canceling gates (down to 0 in some topologies) making tensor-network simulations harder:

UXCZX
FL (h, b1, b2) =

∏
E⊂E

⊗
(q1,q2)∈E

e−i(bq1Xq2
+bq2Xq2

)/2e−iπ
4 Zq1

Zq2 e−ih(Zq1
+Zq2

)e−i(bq1Xq1
+bq2Xq2

)/2, (10)

UXCZX
FLS (h, b1, b2) =

{
UXCZX
FL (h,−b1, b2), VS = V1,

UXCZX
FL (h, b1,−b2), VS = V2,

bq =

{
b1, q ∈ V1,
b2, q ∈ V2.

(11)

3. Models with the RXX+Y Y and iSWAP-like native entangling gates

Consider the gate RXX+Y Y (θ) = e−iθ(XX+Y Y )/2, which reduces to the iSWAP gate (up to a global phase) if
θ = −π

2 . Two RXX+Y Y (θ) gates acting on the overlapping qubit pairs (q1, q2) and (q2, q3) do not commute whenever
the gates are entangling, i.e., θ ̸= πn, n ∈ Z. For this reason, the simplest heterogeneous dynamics is established
through a nonuniform distribution of angles θ, namely,

U
XX+YY|Z
FL (J1, J2, h1, h2) =

∏
E⊂E

⊗
(q1,q2)∈E

e−iJ(q1,q2)(Xq1
Xq2

+Yq1
Yq2

)e−i(hq1
Zq1

+hq2
Zq2

), J(q1,q2) =

{
J1, (q1, q2) ∈ E1,
J2, (q1, q2) ∈ E2.

(12)
The speed of information propagation through edges E1 is faster than that through edges E2 if π

4 ≥ |J1| > |J2| ≥ 0.
Apparently, the operator spreading stops through the edges E2 if J2 = 0. If h1 = h2, then the dynamics preserves the
total magnetization

∑
q Zq. The effective scattering on the edges E1 or E2 corresponds to

U
XX+YY|Z
FLS (J1, J2, h1, h2) =

{
U

XX+YY|Z
FL (J1, J2,−h1, h2), ES = E1,

U
XX+YY|Z
FL (J1, J2, h1,−h2), ES = E2,

(13)

with the scattering operator being Z on a single qubit from the edge (q1, q2) ∈ ES (should a topology be compatible
with that).

Should the iSWAP gate be the native gate of the device, then the following intricate dynamics exhibits the adjustable
heterogeneity:

U
iSWAP|∆Z
FL (h,∆h1,∆h2) =

∏
E⊂E

⊗
(q1,q2)∈E

e−iπ
2 (Xq1Xq2+Yq1Yq2 )e−ih(Zq1+Zq2 )−i∆h(q1,q2)(Zq1−Zq2 )ei

π
2 (Xq1Xq2+Yq1Yq2 ), (14)

∆h(q1,q2) =

{
∆h1, (q1, q2) ∈ E1,
∆h2, (q1, q2) ∈ E2.

(15)

The information propagation through the qubit pair (q1, q2) is blocked if ∆h(q1,q2) = 0 because no entanglement
is created across the link in this case. The larger |∆h(q1,q2)| ∈ [0, π2 ] the more intense the operator leakage. The
importance of different links in the operator spreading can be highlighted in the process

U
iSWAP|∆Z
FLS (h,∆h1,∆h2) =

{
U

iSWAP|∆Z
FL (h,−∆h1,∆h2), ES = E1,

U
iSWAP|∆Z
FL (h,∆h1,−∆h2), ES = E2.

(16)
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C. Probing operator spreading with local and global OTOCs

Should G be a single qubit operator, for instance G = Zq for some qubit position q, then OTOC would be sensitive

to a wavefront of the Heisenberg-picture operator spreading O0(t) = U†
0 (t)OU0(t) from the region qubits Q where O

acts nontrivially. The OTOC is zero beyond the observable light cone and is bounded from above by 4 if ∥O∥22 = 2N

(as takes place, e.g., for O = ZQ). The profile of local OTOC along the grid of qubits can be rather nonuniform
even in the case of local interactions constituting U0(t) if the interactions between qubits are heterogeneous in space.
Heterogeneous systems can exhibit a regime of semi-scrambling, in which some regions of qubits induce fast chaotic-like
scrambling, whereas others have much slower diffusive effect.

In case of the global generator G, for instance G =
∑

q∈A Zq that acts nontrivially in some region A of qubits, the

corresponding global OTOC can be roughly estimated as the area under the local OTOC in this region [19].

III. HYDRODYNAMICS OF THE OPERATOR-SUPPORT DENSITY

Keeping in mind some connectivity graph for qubits on an actual hardware, e.g., the heavy hexagonal topology, let
r denote a geometrical position of the qubit in the given topology. In the case of 1D line, r is merely a position x on
the line, i.e., x ∈ {0, . . . , N − 1} for an N -qubit register. In the case of some 2D topology, r = (x, y). Similarly, in
3D, r = (x, y, z). In general, for a finite number of qubits, N , we have a set of available qubit positions R such that
|R| = N .

Associated with the qubit register is the space C2N×2N of operators acting on N -qubit states. The Pauli operators
P ≡

⊗
r∈R Pr, where Pr = I,X, Y, Z, form an orthogonal basis in the operator space with respect to the Hilbert–

Schmidt scalar product, namely, ⟨P |P ′⟩ = 2NδPP ′ . Any operator O admits a decomposition

O =
∑
P

cPP (17)

so that 2N
∑

P |cP |2 = ∥O∥22.
Let U(t) be a unitary evolution operator for time t ∈ R+. The operator dynamics in the Heisenberg picture reads

O(t) ≡ U†(t)OU(t) =
∑
P

cP (t)P, (18)

where
∑

P |cP (t)|2 = 2−N∥O∥22 regardless of time t. If the initial operator O is a single Pauli string, then ∥O∥22 = 2N

and
∑

P |cP (t)|2 = 1 throught the evolution. Therefore, |cP (t)|2 is a time-dependent discrete probability distribution
in the 4N -dimensional space of Pauli strings P .
The (geometrical) Pauli support for a Pauli string P is defined as a set of qubit positions where the operator P

acts nontrivially, i.e., supp(P ) = {r ∈ R|Pr ̸= I}. By w(P ) denote the Pauli weight of P , i.e., w(P ) =
∑

r:Pr ̸=I 1.

Clearly, w(P ) = |supp(P )|. The operator-support density ρ for a single Pauli operator P is defined as ρP (r) ≡
1

|supp(P )| ×
{

1, r ∈ supp(P ),
0, r /∈ supp(P ),

and shows that the non-trivial action of the Pauli string is spread over the particular

subset of qubits. Note that
∑

r ρP (r) = 1 irrespective of P .
The operator-support density for a general time-dependent operator O(t) in Eq. (18) is defined through

ρ(r, t) =
∑
P

|cP (t)|2ρP (r) =
∑

P : r∈supp(P )

|cP (t)|2|supp(P )|−1. (19)

For a fixed time moment t, Eq. (19) defines a legit probability distribution since ρ(r, t) ≥ 0 and
∑

r ρ(r, t) =∑
P |cP (t)|2

∑
r ρP (r) = 1, where we have used the properties

∑
r ρP (r) = 1 and

∑
P |cP (t)|2 = 1.

Consider an operator dynamics with a local observable O at time t = 0. In the process of evolution, the operator
support typically spreads as interactions tend to delocalize. The continuity equation for the operator-support density,

∂ρ

∂t
+ div j = 0, (20)

defines the density current, j(r, t).
Let SSh(ϱ) be the Shannon entropy of the density ϱ. Then an effective area of the operator-support density

can be defined as eSSh(ϱ). The effective (geometrical) Pauli support of the operator O(t) consists of such points r,
where ϱ(r, t) ≥ e−SSh(ϱ). The change in the effective Pauli support can be probed with the operator-Loschmidt-echo
experiment.
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IV. LOSCHMIDT ECHO

This section is solely dedicated to probing the operator spreading in the echo-type experiments, with no regard to
the underlying time evolution U = U(t) that governs the operator dynamics at the first place. It is Sec. V, where we

combine the measurement of global OTOC with the models U = U†
2U1 considered in Sec. II.

A. Loschmidt echo for states

The return probability
∣∣ ⟨ψ|U†

δ (t)U0(t) |ψ⟩
∣∣2 of a pure state |ψ⟩ under perturbed time-reversed unitary evolution

U†
δ (t)U0(t) is the Loschmidt echo signal [20–22] that exhibits high sensitivity to the perturbation strength δ and,

therefore, has been proposed as a tool in identifying chaotic dynamics, probing dynamical phase transitions, and
enhancing quantum metrology. However, the echo signal in many-body systems typically decays exponentially in
the system size, thus hindering its experimental observation unless scanning over smaller subsystems is done [23].
Implementation of the conventional Loschmidt echo for states on an ideal quantum computer would imply repeated

preparation of the multiqubit state |0⟩⊗N
, its evolution in the gate-based manner according to the time-reversed

unitary operator U†
δ (t)U0(t), and measurement of the resulting state in the computational basis {0, 1}N with the aim

to quantify the frequency fLES of events in which the all-zero bitstring 0×N is observed as a measurement outcome,
fLES ∼ e−δNt. The current generation of quantum computers struggles with conducting such an experiment because
of the prohibitive requirements with respect to the initialization- and measurement-repetition rates as well as the gate
and readout fidelities.

B. Operator Loschmidt echo (OLE)

In contrast to the return probability for states, the operator Loschmidt echo (OLE) quantifies the normalised overlap
(the Hilbert-Schmidt scalar product) of the original operator O with its perturbed time-reversed version,

L =
tr
(
O† × Uδ(t)U

†
0 (t)OU0(t)U

†
δ (t)

)
tr (O†O)

. (21)

OLE can also be seen as the overlap between the Heisenberg-picture observable O0(t) = U†
0 (t)OU0(t) and its per-

turbed counterpart Oδ(t) = U†
δ (t)OUδ(t), namely, L = tr

(
O0(t)O

†
δ(t)

)
/tr(O†O). The denominator of Eq. (21)

takes into account that the Schatten 2-norm (the Frobenius norm) is preserved by the unitary dynamics, i.e.,

∥O∥2 = ∥O0(t)∥2 = ∥Oδ(t)∥2 =
√
tr (O†O). Upon vectorisation of the 2N × 2N -dimensional operator space, Eq. (21)

resembles the return amplitude in the echo signal for 4N -dimensional “states”, L = ⟨⟨Oδ(t)|O0(t)⟩⟩/⟨⟨O|O⟩⟩, though
it is drastically disparate from the Loschmidt echo for states from the viewpoint of experimental feasibility. The
novelty of our approach is in the fact that we avoid dealing with N ququarts (4-dimensional systems), which would
be mathematically equivalent to the Loschmidt echo for 2N -qubit pure states, but rather implement the measure-
ment procedure for Eq. (21) at the level of N qubits by exploiting the ensemble representation of mixed states and
conventional measurements.

C. Measurement of OLE

Let the operator O be Hermitian traceless operator with eigenvalues ±1, for instance, a Pauli string on N qubits.
Then ∥O∥22 = tr(O2) = 2N and Eq. (21) reduces to

L =
1

2N
tr (O0(t)Oδ(t)) . (22)

Let V± := {|ψ±
i ⟩}i be a set of orthonormal eigenvectors of O corresponding to the eigenvalue ±1. Then the cardinality

|V±| = 2N−1, and

ϱ±O =
I⊗N ±O

2N
=

1

2N−1

∑
i

|ψ±
i ⟩ ⟨ψ

±
i | (23)
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are genuine density operators because they both have unit trace (tr(ϱ±O) = 1) and nonnegative eigenvalues 0 and
2−(N−1) each of degeneracy 2N−1 (ϱ±O ⩾ 0). Despite the fact that the state (23) is generally mixed, its preparation
on quantum hardware is straightforward thanks to the ensemble representation in terms of the eigenvectors of O.

Similarly, one can effectively prepare on a quantum computer the operator O itself by sampling uniformly S
eigenvectors |ϕs⟩ ∈ V+ ∪ V− and assigning the corresponding eigenvalues ⟨ϕs|O |ϕs⟩ = ±1 to them, namely,

1

S

S∑
s=1

⟨ϕs|O |ϕs⟩︸ ︷︷ ︸
±1

|ϕs⟩ ⟨ϕs| −→
1

2N
O if S −→ ∞. (24)

There is no extra sampling cost for the implementation of Eq. (24) even though roughly half of the coefficients is
negative. This is because 1

2N
O = 1

2 (ϱ+O − ϱ−O) is a weighted difference of two density operators, with weights
summing to unity.

Let |ϕs(t)⟩ := Uδ(t)U
†
0 (t) |ϕs⟩ denote the time-reversed perturbed evolution of eigenstates |ϕs⟩ of O. Substituting

the representation (24) for O in O0(t) = U†
0 (t)OU0(t) from Eq. (22), we obtain the operator Loschmidt echo

L = lim
S→∞

LS (25)

through its estimator

LS =
1

S

S∑
s=1

⟨ϕs|O |ϕs⟩︸ ︷︷ ︸
±1

×⟨ϕs(t)|O |ϕs(t)⟩ . (26)

The OLE estimator LS is experimentally accessible by means of measuring O in the evolved states |ϕs(t)⟩, and

its estimation error quickly decreases as ∝ 1/
√
S. It is the correlation between ⟨ϕs|O |ϕs⟩ and ⟨ϕs(t)|O |ϕs(t)⟩ that

constitutes the echo experiment and should be perfect if the perturbation is absent (δ = 0). For non-zero perturbations,
OLE provides valuable information about the nature of operator spreading.

1. OLE estimation protocol

Suppose O is a Pauli string comprising only I- and Z-operators on a few qubits Q ⊂ {0, . . . , N − 1}, |Q| ≪ N , i.e.,
O = ZQ ≡ (⊗q∈QZq)⊗ (⊗q ̸∈QI). Then the experiment design is as follows:

1. prepare a randomly chosen bitstring-state |ϕs⟩ ∈ {|0 . . . 0⟩ , . . . , |1 . . . 1⟩};

2. calculate the state parity ⟨ϕs|ZQ |ϕs⟩ ∈ {+1,−1} on the subset Q of qubits;

3. evolve the state |ϕs⟩ in accordance with the unitary evolution Uδ(t)U
†
0 (t);

4. measure the evolved state |ϕs(t)⟩ in the computational basis so as to estimate ⟨ϕs(t)|ZQ |ϕs(t)⟩;

5. repeat the steps 1 to 4 S times;

6. calculate the estimator LS for the operator Loschmidt echo and its estimation error ∆LS as the average of
products ⟨ϕs|ZQ |ϕs⟩ × ⟨ϕs(t)|ZQ |ϕs(t)⟩ and its standard error.

In strike contrast to the Loschmidt echo for states, the operator Loschmidt echo does not require any measurements
to be performed on the qubits beyond the subset Q. This results in the exponentially higher frequency of events fOLE

when the values ⟨ϕs|ZQ |ϕs⟩ and ⟨ϕs(t)|ZQ |ϕs(t)⟩ correlate, namely, fOLE ∼ e−δ|Q|t ≫ e−δNt ∼ fLES.

2. Multiple-OLE estimation protocol

Should all N qubits be measured in the standard basis as an output of quantum computation anyway, this opens
an option to specify the target subset of qubits Q, and consequently the observable ZQ, a posteriori. This specifics
of quantum computation unlocks its potential of estimating multiple OLEs at once, which is prohibitive to many
classical simulation methods. The experiment design for addressing multiple OLEs is as follows:

1. prepare a randomly chosen bitstring-state |ϕs⟩ ∈ {|0 . . . 0⟩ , . . . , |1 . . . 1⟩};
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2. evolve the state |ϕs⟩ in accordance with the unitary evolution Uδ(t)U
†
0 (t);

3. measure the evolved state |ϕs(t)⟩ in the computational basis and save the measurement-outcome bitstring ms

along with the initial state |ϕs⟩;

4. repeat the steps 1 to 3 S times;

5. choose a target subset of qubits Q for OLE;

6. calculate the parity ⟨ϕs|ZQ |ϕs⟩ ∈ {+1,−1} for each s;

7. calculate ⟨ms|ZQ |ms⟩ for each s;

8. calculate the estimator LS(ZQ) for the target operator Loschmidt echo and its estimation error ∆LS(ZQ) as
the average of products ⟨ϕs|ZQ |ϕs⟩ × ⟨ms|ZQ |ms⟩ and its standard error;

9. repeat the steps 5 to 8 for all target observables ZQ.

D. OLE and OTOC

In case the δ-perturbation is time-localised in the middle of echo dynamics, i.e., Uδ(t) = U0(t)Vδ, then the OLE is
directly related with the out-of-time-order correlation function (OTOC) [22, 24, 25]. The OLE in Eq. (21) takes the
form

L =
tr
(
O†

0(t)VδO0(t)V
†
δ

)
tr (O†O)

. (27)

Let G = G† be a generator of the perturbation Vδ, i.e., Vδ = e−iδG. Then we have

VδO0(t)V
†
δ = e−iδGO0(t)e

iδG

= O0(t)− iδ[G,O0(t)]−
δ2

2
[G, [G,O0(t)]]

+ . . .+
(−iδ)k

k!
[G, [G, [. . . [G,O0(t)] . . .]]]︸ ︷︷ ︸

kth-order commutator

+ . . . (28)

Substituting (28) in (27) and taking into account the relation tr(A[B,C]) = tr([A,B]C), we obtain

L = 1 + iδ ×
tr
(
[O†

0(t), O0(t)]G
)

tr (O†O)
− δ2

2
×

tr
(
[G,O0(t)]

†[G,O0(t)]
)

tr (O†O)
+ . . . (29)

For an Hermitian operator O = O†, the first-order term ∝ δ vanishes. So do all odd-order terms because

tr

(
O†

0(t) [G, [G, [. . . [G,O0(t)] . . .]]]︸ ︷︷ ︸
kth-order commutator

)
= (−1)ktr

(
O0(t)

[
G, [G, [. . . [G,O†

0(t)] . . .]]
]

︸ ︷︷ ︸
kth-order commutator

)
.

Therefore, the OLE for an Hermitian traceless operator O with eigenvalues ±1 reads

L = 1− δ2

2
× 1

2N
tr
(
[G,O0(t)]

†[G,O0(t)]
)

︸ ︷︷ ︸
OTOC

+
δ4

4!
× 1

2N
tr
(
[G, [G,O0(t)]]

†[G, [G,O0(t)]]
)

︸ ︷︷ ︸
⩾0

+ . . . (30)

The terms in the second line of Eq. (30) are negligible provided δ ≪ 1. The validity of omitting those terms is
probed experimentally: the assumption is justified as long as the dependence of OLE on δ2 remains linear in the
vicinity of δ = 0 and does not bend up due to the positive fourth-order correction. The slope in the linear dependence
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FIG. 4. Heterogeneous structures probed in the experiment.

OLE(δ2) = 1 − 1
2δ

2 × OTOC enables one to reveal the OTOC in the maximally mixed (infinite temperature) state

ϱ∞ = ( 12I)
⊗N ,

OTOC = ⟨[G,O0(t)]
†[G,O0(t)]⟩ϱ∞ . (31)

The OTOC can also be seen as an ensemble average over the Loschmidt echos for states [26, 27]. However, the OLE
provides a more practical way to estimate the OTOC in the presence of noise.

V. EXPERIMENTAL DESIGN AND THE CASE CIRCUITS

The experimental design designed by Algorithmiq is comprehensively outlined in Fig. 2 as a summary of the previous
sections. Global rescaling with respect to δ = 0 is used as the simplest noise-agnostic mitigation method. The noise-
aware methods such as the tensor-network error mitigation (TEM) [28–30] relying on the learnt structure of the noise
are being tested on complex 2D topologies.

Insofar as the experiment concerned, the first demonstration is done on the heavy-hex topology for the structures
depicted in Fig. 4 with all the key vertices and edges indicated. The model given by Eqs. (8) and (9) is used with the
parameters h = π

8 , b1 = 3π
16 , b = 0.25 for L = 3, 6. The experiment is run by IBM’s team.

VI. CLASSICAL SIMULATIONS

A. Belief-propagation tensor-network simulations

• Belief propagation is first and foremost a contracting self-consistent algorithm for tensor network. Its efficacy
is essential for looped tensor networks, especially for large loops in which the exact tensor contraction often
assumes prohibitive costs, and it is where belief propagation actually work best.

• Being a contracting method, its original definition is on closed tensor Network with no open legs. In this
framework, the algorithm can be summarized as follows:

1. For each edge in the network, define two starting guess messages (vectors) of dimension as the bond
dimension of the edge, one for each direction of the edge i → j, j → i, with i, j being the tensors
surrounding the edge in consideration.

2. For each iteration of the algorithm, each message i → j is defined as the contraction of the tensor i with
all the messages directed to i (x → i). This is the update rule of the self-consistent algorithm, it can be
applied in parallel over each message at the same time, or sequentially, one message at a time.

3. Apply the update of the messages until some convergence criterion is met.
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4. Now, each tensor contraction with its incoming messages represents a valid contraction value of the network,
but to account for differences in convergence across the network, one usually applies some kind of averaging
over all the possible contraction values. This is often expressed in terms of a partition function (see [31])
in analogy with physics.

• The quality of the self consistent BP approximation can be checked by means of the loop correlation analysis,
where each loop (or only some of them) is broken at a chosen edge, and by inserting messages over the indices
reaching the loop from the rest of the network, one can analyze the eigenvalues of the matrix resulting of the
now linearized and contracted loop [17]. This can give a clear idea of how well the messages approximate the
contraction value.

• For tougher cases of numerous tight loops, such as on a square lattice topology of the network, one can resort
to the loop series expansion [31], which uses the notion that loop correlation decays exponentially with the loop
size [32] to average over bigger loops of the network. This is done by inserting the messages over a partition of
the network containing more than one tensor, and resorting to exact contraction within the same partition.

• While, as we explained, belief-propagation is in first instance a contracting method, it has been recently shown to
reliably provide the Vidal-gauge of a tensor-network-state in which belief propagation is applied to the network
formed by the pair of the sites i, i† joint together [33]. This property makes it a remarkable tool not only to
contract a network, but also to evolve it via application of gates, a.k.a. to simulate the evolution of the network.

B. Pauli propagation method

The OTOC quantity in Eq. (31) can be efficiently computed using the Pauli propagation framework [34–36]. Given
an initial Pauli string O0 and a gate-based unitary evolution U , we apply the constituent gates sequentially while
tracking the generated Pauli strings and their corresponding coefficients. The gates comprising the unitary evolution
are Pauli rotations of the form RQ(θ) = exp(−iθQ/2), where Q is the Pauli string that generates the rotation.
When applying the gate RQ(θ) sequentially to all Pauli strings in the decomposition of operator O(t) from Eq. (18),

new Pauli strings and coefficients are generated according to the transformation rule:

R†
Q(θ)PRQ(θ) =

{
P, if [P,Q] = 0

cos(θ)P + i sin(θ)P ′, if {P,Q} = 0,
(32)

where P ′ = i[P,Q]/2. Thus, when the generator Q of the rotation does not commute with the existing Pauli
string P , a new Pauli string is generated through the anticommutation relation. For highly scrambling circuits with
substantial non-Clifford character, the exponential growth in the number of Pauli strings renders exact tracking
computationally intractable.

To address this, we implement truncation strategies that discard Pauli strings. Two primary truncation rules are
employed: coefficient truncation, whereby Pauli strings with coefficients below a predefined threshold are discarded,
and weight truncation, which eliminates Pauli strings when w(P ) exceeds a specified maximum value [8].

In practice, using 32 GB of available memory with these truncation methods, we encountered two possible outcomes:
either the signal decays to zero due to excessive Pauli string elimination, or the simulation exhausts available memory
resources. This limitation motivates the exploration of alternative simulation and truncation approaches.

To quantify the computational resources required for accurate Pauli propagation simulations, we employ the fol-
lowing estimation procedure. Using the single-path Pauli simulations described in Sec. VIC, we first compute the
typical weight wm of Pauli strings comprising the observable O(t) in its Pauli decomposition. The value wm has been
empirically observed to depend on the parameters of the circuit: number of Floquet layers L, total number of qubits
Nq, and the parameter b. By identifying the median weight value wm given specific experimental parameters, we can
estimate the memory requirement in gigabytes for faithful representation of the evolution as

M =

(
Nq

wm

)
3wm

(bp + bc)

8× 109
, (33)

where Nq is the number of qubits, bp and bc are the bits required to represent one Pauli string and its coefficient,

respectively, and 8×109 provides the conversion factor from bits to gigabytes. The binomial coefficient
(
Nq

wm

)
accounts

for the number of ways to distribute the non-identity Pauli operators among Nq qubits, while 3wm represents the
choice of Pauli matrices (X,Y, Z) at each non-identity position.

Representative examples of memory requirements are presented in Table I, demonstrating the exponential scaling
that renders exact Pauli propagation intractable for moderate system sizes and circuit depths.
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Nq L b bp + bc wm Memory (GB)

49 3 0.25 192 19 1014

49 6 0.25 192 34 1020

70 3 0.25 320 21 1019

70 6 0.25 320 39 1031

TABLE I. Memory requirements for simulating quantum evolution using exact Pauli propagation. The parameters L denotes
the number of Floquet layers, b represents the perturbation strength, and wm is the median Pauli weight. The calculation
assumes that all Pauli strings must be retained during evolution, as it is not possible to determine a priori which strings will
contribute significantly to the final observable.

C. Monte Carlo Methods

An alternative computational strategy involves Monte Carlo sampling of Pauli strings to reconstruct O(t), and
use it to compute the commutator with generator G in Eq. (31). Let NP denote the maximum number of Pauli
strings retained in memory during the simulation. Beginning with the single initial Pauli string O0, the application
of non-Clifford gates generates an expanding collection of Pauli strings according to the evolution rule in Eq. (32).

When the number of tracked Pauli strings approaches the imposed limit NP , exact enumeration of all newly gener-
ated strings becomes impossible. Then, when a gate application would generate two Pauli strings following Eq. (32),
we employ probabilistic sampling to retain only one string. The selection follows the natural probability distribu-
tion determined by cos2(θ) and sin2(θ), respectively, corresponding to the squared amplitudes of the transformation
coefficients.

The normalization of coefficients in the evolving Pauli sum is maintained throughout the evolution process, though
only the resulting Pauli strings are collected at the end of each run. Upon completion of S Monte Carlo realizations,
we obtain a collection {nP } representing the number of appearances for each distinct Pauli string across all runs.

To estimate the evolved operator O(t), we compute the coefficients in the Pauli decomposition as cP ∝ 1/
√
nP ,

ensuring the normalization condition ∥O(t)∥2 = 1. The commutator [G,O(t)] can then be directly evaluated, yielding
the OTOC value specified in Eq. (31).

Empirically, optimal performance is achieved when restricting the evolution to a single Pauli string (NP = 1).
However, as the number of simultaneously tracked Pauli strings increases beyond unity, the estimated OTOC value
systematically decreases toward zero, indicating the accumulation of sampling errors in the Monte Carlo approxima-
tion.

While this method is computationally efficient in terms of resource requirements, it suffers from a fundamental
limitation. The simulation protocol is insensitive to the sign of newly generated Pauli strings, as the sampling
decision is based solely on the squared amplitudes cos2(θ) and sin2(θ). Consequently, the substitution θ → −θ in
any Pauli rotation leaves the Monte Carlo sampling outcome unchanged, rendering the method unable to distinguish
between unitaries that differ only in the signs of their rotation angles. This phase insensitivity represents a significant
constraint on the method’s applicability to problems where interference effects are crucial.

D. Statistical approach: Full-scrambling assumption

Assuming the dynamics is fully scrambling, observable O(t) is composed of random Pauli strings, and the distribu-
tion of the squares of the strings’ coefficients is uniform. Then

OTOC = 2|VP | (34)

because every Pauli component commutes or anticommutes with the perturbation generator G with probability 1
2 .

Each commutator in formula (31) results in an additional multiplier 2.
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